The work aims to design a pyrophyllite-modified carbon paste electrode for pesticide detection
in aqueous solutions. The structural and morphological characterization of natural
pyrophyllite clay for Parsovići mine, Bosnia and Herzegovina, and mechanically modified
pyrophyllite was performed using X-ray diffraction analysis (XRD), scanning electron
microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and particle size analysis
(PSD). The electrochemical characteristics of the constructed electrode were investigated using
cyclic voltammetry in 1 mM K4Fe(CN)6 in 0.1 M KCl and 0.5 M H2SO4 and differential pulse
stripping voltammetry in Britton-Robinson buffer at pH 2-8. It was shown that the maximum at
+ 0.96 V versus Ag/AgCl originates from oxidation by carbendazim at pH 4 in the Britton-
Robinson buffer. The electrode designed in this way showed numerous advantages such as good
stability and sensitivity. The developed analytical method is linear over the range of 1 ppm to
10 ppm with r=0.999 and a detection limit of 0.3 ppm.
References
1.
Sanghavi BJ, Hirsch G, Karna SP, Srivastava AK. Potentiometric Stripping Analysis of Methyl and Ethyl Parathion Employing Carbon Nanoparticles and Halloysite Nanoclay Modified Carbon Paste Electrode. Analytica Chimica Acta. 2012;735:37–45.
2.
Pérez-Rodriguez JL, Sánchez-Soto PJ. The influence of the dry grinding on the thermal behaviour of pyrophyllite. Journal of Thermal Analysis. 1991;37(7):1401–13.
3.
Sugiyama K, Filio JM, Saito F, Waseda Y. Structural change of kaolinite and pyrophyllite induced by dry grinding. Mineralogical Journal. 1994;17(1):28–41.
4.
Sánchez-Soto PJ, Pérez-Rodríguez JL, Sobrados I, Sanz J. Influence of grinding in pyrophyllite-mullite thermal transformation assessed by 29Si and 27Al MAS NMR Spectroscopies. Chemistry of Materials. 1997;9(3):677–84.
5.
Sánchez-Soto PJ, Haro M, Pérez-Maqueda LA, Varona I, Rodríguez JLP. Effects of dry grinding on the structural changes of kaolinite powders. Journal of American Ceramic Society. 2000;83(7):1649–57.
6.
Wiewióra A, Sánchez-Soto PJ, Avilés MA, Justo A, Pérez-Rodríguez JL. Effect of dry milling and leaching on polytypic structure of pyrophyllite. Applied Clay Science. 1993;8(4):261–82.
7.
Švancara I, Kalcher K, Walcarius A, Vytřas K. Electroanalysis with Carbon Paste Electrodes, CRS Press. 2012;
8.
Guth U, Brosda S, Schomburg J. Applications of clay minerals in sensor techniques. Applied Clay Science. 1996;11(2–4):229–36.
9.
Pekin M, Bayraktepe DE, Yazan Z. Electrochemical sensor based on a sepiolite clay nanoparticle-based electrochemical sensor for ascorbic acid detection in real-life samples. Ionics. 2017;23(12):3487–95.
10.
Momčilović MZ, Ranđelović MS, Purenović MM, Đorđević JS, Onjia A, Matović B. Morpho-structural, adsorption and electrochemical characteristics of serpentinite. Separation and Purification Technology. 2016;163:72–8.
11.
Akanji SP, Arotiba OA, Nkosi D. Voltammetric Determination of Pb(ii) Ions at a Modified Kaolinite-Carbon Paste Electrode. Electrocatalysis. 2019;10(6):1–10.
12.
Goda ES, Gab-Allah MA, Singu BS, Yoon KR. Halloysite nanotubes based electrochemical sensors: A review. Microchemical Journal. 2019;147:1083–96.
13.
Achar TK, Bose A, Mal P. Mechanochemical synthesis of small organic molecules. Beilstein Journal of organic chemistry. 2017;13(1):1907–31.
14.
Kula P, Navrátilová Z, Kulová P, Kotoucek M. Sorption and determination of Hg(II) on clay modified carbon paste electrodes. Analytica Chimica Acta. 1999;385(1–3):91–101.
15.
Williamson GK, Hall WH. X-ray Line Broadening from Filed Aluminium and Wolfram. Acta Metallurgica et Materialia. 1953;1(1):22–31.
16.
Amritphale SS, Bhasin S, Chandra N. Energy efficient process for making pyrophyllitebased ceramic tiles using phosphoric acid and mineralizers. Ceramics International. 2006;32(2):181–7.
17.
Erdemoğlu M, Erdemoğlu S, Sayılkan F, Akarsu M, Şener Ş, Аyılkan HS. Organofunctional modified pyrophyllite: preparation, characterization and Pb(II) ion adsorption property. Applied Clay Science. 2004;27(1–2):41–52.
18.
Mitrović A, Pantić T, Dimitrijević S, Ivanović A, Novaković N, Kurko S, et al. Electrochemical sensors based on pyrophyllite – Parsovic.
19.
Milićević J, Kurko S, Mamula BP, Trtić-Petrović T, Pantić T, Govedarević SM, et al. Electrochemical behaviour of pyrophyllite carbon paste composite electrode. In: 3rd International Symposium on Materials for Energy Storage and Conversion, September 10-12th, 2018.
20.
Rajić AIM, Milićević JS, Novaković JDG. Development of modified pyrophyllite carbon paste electrode for carbendazim detection. Materials and Manufacturing Processes. 2022;1–7.
21.
Kalijadis A, Djorđević J, Papp Z, Jokić B, Spasojević V, Babić B, et al. A novel carbon paste electrode based on nitrogen-doped hydrothermal carbon for electrochemical determination of carbendazim”. Journal of Serbian Chemical Society. 2017;82(11):1259–72.
22.
Ashraf AM, Đorđević J, Guzsvány V, Švancara I, Trtić-Petrović T, Purenović M, et al. Trace determination of carbendazim fungicide using adsorptive stripping voltammetry with a carbon paste electrode containing tricresyl phosphate. International Journal of Electrochemical Science. 2012;7(10):9717–31.
23.
Guo YS, Guo S, Li J, Wang E, Dong S. Cyclodextrin–graphene hybrid nanosheets as enhanced sensing platform for ultrasensitive determination of carbendazim. Talanta. 2011;84(1):60–4.
24.
Heller H, Keren R. Anionic polyacrylamide polymer adsorption by pyrophyllite and montmorillonite. Clays and Clay Minerals. 2003;51(3):334–9.
25.
Mohammadnejad S, Provis JL, Deventer JSJ. Effects of grinding on the preg-robbing behavior of pyrophyllite. Hydrometallurgy. 2014;146:154–63.
26.
Pérez-Rodríguez JL, Villar LMS, Sánchez-Soto PJ. Effects of dry grinding on pyrophyllite. Clay Minerals. 1988;23:399–410.
27.
Sánchez-Soto PJ, Justo A, Pérez-Rodríguez JL. Grinding effect on kaolinite-pyrophyllite-illite natural mixtures and its influence on mullite formation. Journal of Materials Science. 1994;29(5):1276–83.
28.
Filio JM, Sugiyama K, Saito F, Waseda Y. Effect of Dry milling on the Structures and Physical Properties of Pyrophyllite and Talc by a Planetary Ball Mill. International Journal of the Society of Materials Engineering for Resources. 1993;1(1):140–7.
29.
Sayılkan H, Erdemoğlu S, Şener Ş, Sayılkan F, Akarsu M, Erdemoğlu M. Surface modification of pyrophyllite with amino silane coupling agent for the removal of 4-nitrophenol from aqueous solutions. Journal of Colloid and Interface Science. 2004;275(2):530–8.
30.
Temuujin J, Okada K, Jadambaa TS, MacKenzie KJD, Amarsanaa J. Effect of grinding on the leaching behaviour of pyrophyllite. Journal of the European Ceramic Society. 2003;23(8):1277–82.
31.
Pérez-Rodríguez JL, Wiewiora A, Ramirez-Valle V, Durán A, Pérez-Maqueda LA. Preparation of nano-pyrophyllite: Comparative study of sonication and grinding. Journal of Physics and Chemistry of Solids. 2007;68(5–6):1225–9.
32.
Mukhopadhyay TK, Ghatak S, Maiti HS. Pyrophyllite as raw material for ceramic applications in the perspective of its pyro-chemical properties. Ceramics International. 2010;36(3):909–16.
33.
Li G, Zeng J, Luo J, Liu M, Jiang T, Qiu G. Thermal transformation of pyrophyllite and alkali dissolution behavior of silicon. Applied Clay Science. 2014;99:282–8.
34.
Zhang J, Yan J, Sheng J. Dry milling effect on pyrophyllite–quartz natural mixture and its influence on the structural alternation of pyrophyllite. Micron. 2015;71:1–6.
35.
Hayashi H, Koshi K, Hamada A, Sakabe H. Structural change of pyrophyllite by grinding, and its effect on the toxicity of the cell. Clay Science. 1962;1(5):99–108.
36.
Goswami A, Purkait MK. Kinetic and Equilibrium Study for the Fluoride Adsorption using Pyrophyllite. Separation Science and Technology. 2011;46(11):1797–807.
37.
Saxena S, Prasad M, Amritphale SS, Chandra N. Adsorption of cyanide from aqueous solutions at pyrophyllite surface. Separation and Purification Technology. 2001;24(1–2):263–70.
38.
Gücek SŞ, Bilgen S, Mazmancı MA. Adsorption and kinetic studies of cationic and anionic dyes on pyrophyllite from aqueous solutions. Journal of Colloid and Interface Science. 2005;286(1):53–60.
39.
Jeong Y, Lee S, Hong S, Park C. Preparation, characterization and application of low-cost pyrophyllite-alumina composite ceramic membranes for treating low-strength domestic wastewater. Journal of Membrane Science. 2017;536:108–15.
40.
Ahmad R, Aslam M, Park E, Chang S, Kwon D, Kim J. Submerged low-cost pyrophyllite ceramic membrane filtration combined with GAC as fluidized particles for industrial wastewater treatment. Chemosphere. 2018;206:784–92.
41.
Dixon JB, Schulze DG, Zelazny LW, Thomas PJ, Lawrence CL. Chapter 13- Pyrophyllite-Talc Minerals. In: Soil Mineralogy with Environmental Applications. 2002. p. 415–30.
42.
Qin X, Zhao J, Wang J, He M. Atomic Structure, Electronic and Mechanical Properties of Pyrophyllite under Pressure: A First-Principles Study. Minerals. 2020;10(9):778.
43.
Wardle R, Brindley GW. The crystal structures of pyrophyllite, 1Tc, and of its dehydroxylate. American Mineralogist. 1972;57:732–50.
44.
Tole I, Habermehl-Cwirzen K, Cwirzen A. Mechanochemical activation of natural clay minerals: an alternative to produce sustainable cementitious binders – review. Mineralogy and Petrology. 2019;133:449–62.
45.
Baláž P, Achimovičová M, Baláž M, Billik P, Cherkezova-Zheleva Z, Criado JM, et al. Hallmarks of mechanochemistry: from nanoparticles to technology. Chemical Society Reviews. 2013;42(18):7571–637.