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ABSTRACT 
The work aims to design a pyrophyllite-modified carbon paste electrode for pesticide detection in 
aqueous solutions. The structural and morphological characterization of natural pyrophyllite clay 
for Parsovići mine, Bosnia and Herzegovina, and mechanically modified pyrophyllite was 
performed using X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), Fourier 
transform infrared spectroscopy (FTIR) and particle size analysis (PSD). The electrochemical 
characteristics of the constructed electrode were investigated using cyclic voltammetry in 1 mM 
K4Fe(CN)6 in 0.1 M KCl and 0.5 M H2SO4 and differential pulse stripping voltammetry in Britton-
Robinson buffer at pH 2-8. It was shown that the maximum at + 0.96 V versus Ag/AgCl originates 
from oxidation by carbendazim at pH 4 in the Britton-Robinson buffer. The electrode designed in 
this way showed numerous advantages such as good stability and sensitivity. The developed 
analytical method is linear over the range of 1 ppm to 10 ppm with r=0.999 and a detection limit 
of 0.3 ppm. 
 
1. INTRODUCTION 
The crystal lattice of 2:1 phyllosilicate mineral pyrophyllite consists of an octahedral sheet 
of AlO4(OH)2 located between two SiO4 tetrahedral layers.  The bonds between layers are 
weak van der Walls [1-8], so the layers can easily slide over each other. Pyrophyllite can 
be used in porcelain, building materials, fire-resistant material, insecticide, textiles, 
detergents, cosmetics, and as the filler for rubberizing, papermaking, painting, etc. [2,9-15]. 
Different applications of pyrophyllite starting from various types of ceramics including 
refractories, enamels, and ceramics membranes [9,10,1,17] to heavy metal and organic 
pollutant adsorbents [16-20] require different modifications methods [1-22]: 
1. ion exchange with inorganic and organic cations and cationic complexes; 
2. reaction with acids; 
3. pillaring by different types of poly- (hydroxo metal) cation; 
4. dehydroxylation and calcination, delamination and reaggregation of clay minerals; 
One of the possible methods of modification is mechanochemical activation (MCA). MCA 
is an environmentally friendly green chemistry method that introduces structural disorder, 
reduces particle size, and increases of chemical reactivity of material [21-23]. It has been 
shown that in contrast to the high chemical stability of pyrophyllite, mechanochemically 
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activated pyrophyllite and its ores result in noteworthy structural distortion and reduction 
of particles and crystallite size [1-5,7,8,18,11,21,24-28]. Therefore in this work, we suggest 
the use of MCA as a modification technique for pyrophyllite as functionalized material for 
modified carbon paste electrode (CPE). CPEs are extensively used in the field of 
electrochemical sensors due to the low cost of materials, simple sample preparation, low 
background current, and wide potential window [29]. CPEs are a mixture of graphite 
(carbon) materials, a binder (paraffin oil, silicone oil, or tricresylphosphate), and some 
functionalization materials. Clay-based electrochemical sensors are used for qualitative and 
quantitative analysis of various gases and components in aqueous solutions [30-36]. 
Previous research has been done on clays such as sepiolite, serpentinite, kaolinite, haloysite, 
montmorillonite [31-36]. 
According to our best knowledge, there are no scientific studies related to the application 
of CPE based on mechanically modified pyrophyllite in electroanalytical practice. 
Therefore, we propose using pyrophyllite as the electrochemical active substance in CPEs 
as a working electrode for detecting the carbendazim pesticide. Determination of pesticide 
traces in food and water is of extreme interest since pesticides are highly toxic chemicals 
with pronounced carcinogenicity and endocrine-disrupting effects.  

 
2. EXPERIMENTAL PART 
X-ray diffraction has been used to determine the phase composition of samples using 
Rigaku Ultima IV, Japan). Crystallite size and lattice strain are calculated using XRD 
profile analysis using the Williamson-Hall plot according to Eq. (1) [37]: 

D
 9.0)sin(2)cos(                                                    (1) 

where k = 0.9 is the shape factor and β is the corrected peak full width at half maximum 
(FWHM) [33] 
The )cos(  is plotted as a function of )sin( , and a straight line is derived using the least 
squares method with an intercept at 0.9 λ/D and a slope of 2ε. Both crystallite size D and 
lattice strain  are calculated from equation (1). The qualitative analysis of samples was 
performed on Thermo Scientific Nicolet iS10 Spectrometer using attenuated total 
reflectance (ATR) sampling technique.  The surface modifications, the phase distribution 
of the MCA-activated clays, material homogeneity, and morphology of the powder particles 
were investigated by scanning electron microscopy (SEM) using model JOEL 
JSM6610LV, manufacturer JOEL, USA) equipped with EDS spectrometer model BLACK-
Comet CXR-SR-50, manufacturer StellarNet Inc.). A Malvern 2000SM Mastersizer laser 
scattering particle size analysis system has been used to obtain quantitative clay particle 
size distributions. The Ag/AgCl electrode (saturated with KCl) was used as a reference 
electrode, the platinum wire was used as an auxiliary electrode, and different types of 
pyrophyllite-modified CPE with paraffin oil were used as the working electrodes. 
Voltametric analyses were done on Gamry potentiostat Interface 1010E. 
 
3. RESULTS AND DISCUSSION 
Figure 1 shows XRD patterns of pyrophyllite ore (P-0) from the Parsovići mine (Bosnia 
and Herzegovina). The ore contain pyrophyllite, quartz, kaolinite, calcite, and muscovite. 
Two major phases are pyrophyllite with characteristic reflections at 2θ 9.68 and 29.23 and 
quartz at 2θ 20.94 and 26.74 [11]. Mechanical modification causes a noticeable increase in 
the crystallite size of both quartz and pyrophyllite, thus indicating the presence of residual 
stress in the crystal lattice as shown in Figure 2. After 15 minutes of mechanical milling 
microstrain and crystallite size decreases.   
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Figure 1. XRD patterns of pyrophyllite ore from the Parsovići mine, Bosnia and Herzegovina 

 

Figure 2. Microstrain and crystallite size of 
pyrophyllite samples milled from 0 to 15 

minutes 

Figure 3. Changes in geometric-specific 
surface area and particle size during 

mechanical milling 
 
FTIR spectra are shown in Figure 4. The unmilled sample (P-0) showed a strong band at 
3672 cm-1 which can be assigned to OH vibration from Al-OH linkage [11]. At 1120 cm-1, 
a strong band is observed that can be attributed to Si-O stretching vibration. The bands at 
832 cm-1 and 943 cm-1 correspond to Al-OH bending vibration. The peak at 518 cm-1 can 
be assigned to Si-O-Si bending vibration. The vibration at 1616 cm-1 corresponds to 
bending the OH surface group [11]). The band at 802 cm-1 corresponds to the characteristic 
bands of silica [38]. The band at 754 cm-1 indicates the presence of Si–O–Al where Al is in 
tetrahedral coordination. It also indicates that there is a possible presence of 
sericite/muscovite minerals. The peak at 532 cm-1 can be assigned to octahedral AlO6 sheet 
vibrations. The band at 1028 cm-1 can be assigned to the intense Si–O and Si–O–Al 
stretching vibrations, characteristic of aluminosilicates [9]. The band at 450 cm-1 
corresponds to the bending of Si – O groups [39]. After 5 minutes of grinding, the bands at 
779 cm-1 and 797 cm-1 appear indicating the presence of quartz [21] and thus confirming 
the results of XRD analysis. These vibrations are present even after 120 minutes of 
grinding, indicating that quartz has a more stable structure than pyrophyllite [7]. After 15 
minutes of grinding, the vibration at 1120 cm-1 disappears indicating a breakdown of the 
Si-O band, which means that the tetrahedral sheets have been destroyed. Also, after 60 
minutes of milling, the bands at 3673 cm-1, 943 cm-1, and 832 cm-1 disappeared, as a result 
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of the release of OH groups from the Al-centered octahedrons. Therefore, the octahedral 
sheets are damaged [11]. The intensity of the band at 518 cm-1 decreases with increasing 
milling time as a consequence of the collapse of the Si-O-Al band, resulting in a broken 
link between the tetrahedral and octahedral sheets [11].  
The differential pulse stripping voltammetry was used for the quantitative determination of 
carbendazim. Based on the previous results [40,41], an electrode with a composition of 
50P:50C was chosen as the working electrode, where pyrophyllite was mechanochemically 
activated for a period of 15 minutes. Changes were monitored at pH 4 and 8. 

 
Figure 4. FTIR of pure and milled material from 0 to 15 minutes, P-O (O min), P-5 (5 min), P-10 

(10 min), P-20 (20 min) 
 

Figure 5 shows differential pulse voltammograms for the determination of carbendazim in 
Britton-Robinson buffer at pH 4. (lower) and pH 8 (higher). The maximum occurs at + 0.96 
V and 0.73 respectively. The maximum intensity increases with increasing concentration 
of carbendazim [42]. The peak at around 0.5 V corresponds to the hydrogen evolution 
reaction. 
From peak maxima, we have obtained the calibration curves for carbendazim detection with 
excellent linearity. The slope and intercept at pH 8 have the following values 0.40 and 8.85, 
while at pH 4 are 0.31 and 9.22. 
The results show that the sensor constructed in this way, carbon paste modified with 
pyrophyllite where paraffin oil was used as the binding liquid, in Britton-Robinson buffer 
shows excellent sensitivity and a low detection limit in the range from 1 ppm to 10 pm. 
Kalijadis et al. used the method of differential pulse stripping voltammetry for qualitative 
and quantitative detection of carbendazim, where a carbon paste electrode obtained with 
nitrogen was used as the working electrode, while tricresyl phosphate was used as the 
binding liquid [43]. Ashrafi et al. investigated a carbon paste electrode with tricresyl 
phosphate as a binding fluid for the detection of carbendazim [44]. The influence of pH in 
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the Britton-Robinson buffer on pH in the range from 2 to 8 was also investigated. The 
maximum oxidation of carbendazim was most intense at pH 4. 

 
Figure 5. Differential pulse voltammograms for the determination of carbendazim in Britton-

Robinson buffer at pH 4 (lower) and pH 8 (higher) 
 

 
 

Figure 6. Calibration curve obtained for a pyrophyllite-modified carbon paste electrode with 
paraffin oil as a binding fluid for the detection of carbendazim in Britton-Robinson buffer at pH 4 

and pH 8 in the concentration range from 1 ppm to 10 ppm 
 
The influence of the presence of 2-hydroxypropyl-β-cyclodextrin on the electrochemical 
behavior of carbendazim was also investigated. The detection was followed by the method 
of differential pulse adsorptive "striping" voltammetry. It was found that the analytical 
performance of the tricresyl phosphate carbon paste electrode could be improved almost 
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two-fold by the addition of the 2-hydroxypropyl-β-cyclodextrin modifier. Guo and co-
workers (Guo et al.) used cyclodextrin-graphene hybrid nanosheets as a material for the 
electrochemical detection of carbendazim [45]. The effect of pH was investigated in the 
range of 5 to 10 in 0.1 M phosphate buffer. At pH 7, the maximum oxidation by 
carbendazim was the most intense, so the measurements were performed at this pH value. 
Differential pulse voltammetry was used for carbendazim detection. The detection limit 
was 2.0∙10−9 mol/L, and the relative standard deviation was 4.67%. 
 
4. CONCLUSION 
Mechanochemically activated pyrophyllite was used for the construction of electrochemical 
sensors. The microstructural and morphological characterization of the material was 
performed by X-ray structural analysis, scanning electron microscopy, and infrared 
spectroscopy with Fourier transform, and the particle size distribution was monitored by 
the laser diffraction method. The response of the sensor was obtained by differential pulse 
stripping voltammetry. Based on X-ray structural analysis, it was concluded that the 
mechanochemical modification leads to a change in the crystal structure of pyrophyllite. 
The particles change their morphology from lamellar to particles that do not have a 
characteristic shape already after 5 minutes of grinding while the specific surface area 
increases with the increase of milling time. Given that mechanical grinding causes the 
amorphization of soft phases of pyrophyllite ore, further insight into the structure of the 
material was provided by infrared spectroscopy with Fourier transform. It was shown that 
after 15 minutes of grinding the tetrahedral structure (SiO4 plate) collapses. 
Mechanochemically activated pyrophyllite was used to form a modified carbon paste 
electrode. This electrode is part of the pesticide detection sensor. The electrochemical 
properties of the obtained electrode were investigated by cyclic voltammetry and 
differential pulse stripping voltammetry. It was also shown that the reactions at the 
electrode are fast and reversible and that the electrode is stable. Differential pulse stripping 
voltammetry showed that this electrode can be used for qualitative and quantitative 
detection of carbendazim fungicides. The best results were obtained at pH 4, where the limit 
of detection was 0.3 ppm, the limit of quantification was 1.03 ppm, and the residual 
standard deviation was 2.3 %.  
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