We have introduced a theory for the calculation of thermodynamic characteristics for some
characteristic nanostructures (ultrathin films and superlattices), using the adapted method of twotime
temperature Green's functions. In this paper, we have determined the coefficient of thermal
conductivity using the definition of free energy and then compared their temperature dependence
to the thermal conductivity behavior of the bulk structures. For the observed nanostructures, the
thermal conductivity coefficient values are almost equal at low temperatures, but at the same time,
significantly lower than the bulk sample values. That result could be useful for the possible
achievement of better superconducting conditions in the observed compound nanostructures.
References
1.
Isihara A. Statistical Physics. ISBN. 1971;9781483274102.
2.
Cocemasov AI, Nika DL, Balandin AA. Engineering of the thermodynamic properties of bilayer graphene by atomic plane rotations: the role of the out-of-plane phonons. Nanoscale. 7(30):12851–9.
3.
Alofi A, Srivastava GP. Phonon conductivity in graphene. Journal of Applied Physics. 2012;112(1).
4.
Popov VN. Low-temperature specific heat of nanotube systems. Physical Review B. 66(15).
5.
Schwab K, Henriksen EA, Worlock JM, Roukes ML. Measurement of the quantum of thermal conductance. Nature. 2000;404(6781):974–7.
6.
Santamore DH, Cross MC. The Effect of Surface Roughness on Universal Thermal Conductance, 1. PhysRevB. 2001;63(1):389–92.
7.
D.L.Nika AIC, Balandin AA. Specific heat of twisted bilayer graphene: Engineering phonons by atomic plane rotations Appl. Phys Lett. 2014;105:031904,.
8.
Nika DL, Balandin AA. Phonons and Thermal Transport in Graphene and Graphene-Based Materials. Phys. 2017;80:036502,.
9.
Jain A, Goodson KE. Measurement of the Thermal Conductivity and Heat Capacity of Freestanding Shape Memory Thin Films Using the 3ω Method. Journal of Heat Transfer. 2008;130(10).
10.
Kittel C. Introduction to Solid State Physics. 1986.
11.
Tyablikov SV. Methods of Quantum Theory in Magnetism. 1975;
12.
Šetrajčić JP, Mirjanić DL, Vučenović SM, Ilić DI, Markoski B, Jaćimovski SK, et al. Phonon Contribution in Thermodynamics of Nano-Crystalline Films and Wires. Acta Phys Pol A. 2009;115:778-782,.
13.
Šetrajčić JP, Jaćimovski SK, Vučenović SM. Green’s Functions in Quantum Statistical Physics. In: Condensed Matter Physics, International Conference on Applied Sciences, Banja Luka. 2022.
14.
Šetrajčić JP, Jaćimovski SK, Sajfert VD. Phonon Engineering Theory of Crystalline Layered Nanostructures. :57,.
15.
Agranovich VM, Galanin MD. Migration of Electron Energy Excitations in Condensed Matter, Nauka. 1978;
16.
Kubo RJ. Statistical-Mechanical Theory of Irreversible Processes. II Response to Thermal Disturbance, J Phys Soc Jpn. 1957;12:570,.
17.
Šetrajčić JP, Ilić DI, Jaćimovski SK. The influence of the surface parameter changes onto the phonon states in ultrathin crystalline films. Physica A: Statistical Mechanics and its Applications. 2018;496:434–45.
18.
Šetrajčić JP, Jaćimovski SK, Vučenović SM. Diffusion of phonons through (along and across) the ultrathin crystalline films. Physica A: Statistical Mechanics and its Applications. 2017;486:839–48.
19.
Šetrajčcií JP, Sajfert VD, Jaćcimovski SK. Fundamental Preferences of the Phonon Engineering for Nanostructural Samples. Reviews in Theoretical Science. 2016;4(4):353–401.
20.
Šetrajčić JP, Jaćimovski SK, Sajfert VD. Phonon contribution to heat capacitance of nanolayered crystalline structures. Modern Physics Letters B. 2015;29(04):1550008.
21.
P.Šetrajčić J, Zorić VM, Delić NV, Mirjanić DL, Jaćimovski SK. Phonon Participation in Thermodynamics and Superconductive Properties of Thin Ceramic Films, Ch.15. M. :317-348,.