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ABSTRACT 
We have introduced a theory for the calculation of thermodynamic characteristics for some 
characteristic nanostructures (ultrathin films and superlattices), using the adapted method of two-
time temperature Green's functions. In this paper, we have determined the coefficient of thermal 
conductivity using the definition of free energy and then compared their temperature dependence 
to the thermal conductivity behavior of the bulk structures. For the observed nanostructures, the 
thermal conductivity coefficient values are almost equal at low temperatures, but at the same time, 
significantly lower than the bulk sample values. That result could be useful for the possible 
achievement of better superconducting conditions in the observed compound nanostructures. 
 
1. INTRODUCTION 
Elementary particles – mechanical oscillations – phonons are a subsystem that is always 
present when analyzing the conducting, semiconducting or dielectric properties of the 
system. Accordingly, we will first analyze the kinetics of mechanical oscillations in 
nanoscopic–ultrathin films, which can be considered as a basis for investigating other 
properties of more complex nanostructures. In a way, this work represents a generalization 
of the previous research [1–6]. 
We will start with the definition expression for the coefficient of thermal conductivity [7,8]: 
 
 MCD   , (1.1) 

where is D - diffusion coefficient, C  – specific heat, and M is the mechanical density of 
the observed structure. The diffusion coefficient D (strictly, it is the diagonal matrix 
element of diffusion tensor Dij) will be found by the Kubo formula [7]. The temperature 
dependence of nanostructures density will be determined by the two-time, temperature-
dependent Green's function method [9]. Using this method one can find the internal energy 
and the average value of the square of molecular displacements. 
All analyzes will be calculated regarding the presence of specific boundary conditions on 
its surfaces, which are responsible for the appearance of unusual effects and changes in the 
basic properties of these structures [6]. 
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2. CALCULATION OF THE DIFFUSION COEFFICIENT 
In order to determine the diffusion coefficient, we will start with the Kubo formula [7,8]: 
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where iv̂  and jv̂  (i,j = x,y,z) are the velocity operators in Heisenberg representation,   is 
the perturbation parameter and the averages will be taken over a great canonical ensemble. 
We will find the correlation function  )(ˆ)0(ˆ tvv ji  through Green's function  )0()( ji ptp  
where )0(),( ji ptp  represent the components of the molecular momentum. 
The Hamiltonian of the phonon subsystem of a superlattice with two motifs a and b (two 
ultrathin films) taken in harmonic and nearest neighbor’s approximation [9], can be written 
as follows: 
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where Ma/b are the masses of molecules in first/second ultrathin films, VP/B are the potential 
energies of surface and bulk terms, uMp   (u  are molecular displacements) and ban /  
are numbers of molecules in corresponding motive. Boundary conditions will be taken into 
account during the formation of a system of equations defining Green's function of the 
system.  
We have determined the following Green's function, which will be written in the next form: 

 )0()(, fnnfnngmmmfnnn yxyxzyxzyx
ptpG . Because of the valid relation: pi = M vi ; vi = 

dui / dt, in the expression determining this function, appears the second Green's function of 
a type  )0()( fnnfnn yxyx

utu  [10]. In this way, the correlation function of Green's 
function is given by a general formula [11,12]: 
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Green's function can be expressed as a sum of elementary fractions [10]. In this way, we 
obtain the correlation function (2.3), i.e. corresponding velocity correlation function: 
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In accordance with the general formula (2.2) the diffusion coefficient is given by: 
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It is seen that the phonon diffusion coefficient of the superlattice, as well as that of the bulk, 
does not depend on temperature [13]. 
 
3. THERMODYNAMIC BEHAVIOUR OF SUPERLATTICE 
The internal energy of the system is given by the standard formula [11-13]: 
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where the phonon dispersion law is given by the basic formula: Phonon-reduced 
frequencies and intermolecular distance are expressed through the geometric mean of 
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phonon frequencies, i.e. of intermolecular distances in separate motifs: 
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After partial integration in (3.1) and introducing notations: Mkkkm akE
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obtain the following expression: 
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Since the specific heat is given by 



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svs  using (3.2), we find that: 
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(3.3) 

Temperature dependence of the thermal capacity is determined by two specific terms. The 

first term is:  /)e1( 1



m

 which is “responsible” for the behavior of the system at low 
and high temperatures. The second term containing Z-functions characterizes temperature 
behavior in the middle-temperature range. 
Based on the results of the previous research on the phonon contribution to the 
thermodynamic behavior of the ultra-thin film structures [1–3], and the well-known 
behavior of the bulk [7,11–13], Fig.1 is showing a comparative display of the specific heat 
for the superlattice, ultra-thin film and the bulk structures in dependence of the reduced 
temperature:  xm 
From Fig.1, one can conclude that the behavior of the thermal capacity of a superlattice in 
a low-temperature range is similar to bulk ones. The temperature behavior of the thermal 
capacity of a superlattice in middle-temperature region is similar to film ones. The 
difference in these capacities is most pronounced in the high-temperature area.  
Now we will approach the determination of the temperature behavior of the superlattice 
thermal conductivity. The expression for the dynamical density of superlattice: 
The primary text heading should be numbered by 1., 2., ... and should be in 12-pt., bold, 
capital letters, flush left with margin. The spacing from text to the next heading is one line. 
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The averages of squares of displacements for molecular superlattices we can find as in 
Debye’s representation. After integration, the expression for the density becomes: 
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Diffusion coefficient is given by the relation (2.5), where: 
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are the average value phonon frequencies. After elementary calculations we obtain for the 
diffusion coefficient: 
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Introducing notations: m = x we reduce the expression (1.1) for thermal conductivity 
coefficient to the form: 
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Temperature dependence of the thermal conductivity coefficient is determined by two 
specific terms. Similar to the expression for thermal capacity, here is the first term: 

 /)e1( 1/  m , which is “responsible” for behavior of the system at low and high 
temperatures. Also, the second term containing Z-functions, characterizes temperature 
behavior in middle-temperature range. Graphical presentation of dependence of relative 
thermal conductivity coefficient )()(13.2/ 210 xJxJ   on scaled temperature x=/ 

D  is given the Fig. 2. 

 
 

 

Figure 1. Specific heats of bulk (b),  films (f), 
and superlattice (s) structures 

Figure 2. Conductivity coefficient of bulk (b), 
films (f), and superlattice (s) structures 

From Fig. 2 it can be concluded that the behavior of the thermal conductivity coefficient of 
the superlattice is similar to the ultrathin film one (it is higher than in bulk structure). The 
difference is more expressive in the middle and high-temperature ranges. So, it can be 
concluded that the superlattices in the low-temperature range are somewhat better heat 
conductors than the bulk structures. At the same time, the heat conduction of the film is 
higher than in superlattices. On the other hand, in the high-temperature range superlattices 
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are much better heat isolators than film structures and the corresponding infinite crystal 
structures. 
As our results were obtained theoretically, we looked for experimental confirmation in the 
scientifically available literature. An extensive analysis of the available experimental 
results was carried out [14–21], of which we will in this paper present, for the sake of 
brevity, only a few of them. In the paper [14], the thermodynamic characteristics of 
micrometer SiN film structures were measured. Although these are not real nanostructures 
(because the thickness of these films is about 1.5 µm), film microstructures still show 
similar behavior of specific heat and thermal conductivity as our theoretically obtained and 
predicted dependences for film structures (Fig. 3). 
 

 
 

Figure 3. Thermal conductivity and heat capacity for 1.5 µm silicon nitride films [14]  
 

Since graphene is one of the most studied materials today, and it is a true member of nano-
thin (film) structures, it was justified to compare our results with the thermodynamic 
behavior of graphene. In the paper [15], the specific heat was measured for graphene (nano-
film structure of carbon atoms), AB-stacked bilayer graphene (AB-BLG), and graphite 
(which represent an essential bulk structure). 
 

 
 

Figure 4. Phonon-specific heat capacity in graphene, AB-BLG, and graphite [15,16] 
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It is clearly visible that our calculations show a similar behavior of the dependence of the 
specific heat on the temperature for the film structure, compared to the bulk structures, in 
the domain of low temperatures (i.e. on the temperatures interesting for many phenomena 
- such as superconductivity). Fig. 4, in the frame, shows the dependence of specific heat at 
high temperatures, which obeys the Dulong-Petit law.   
 
4. CONCLUSION 
The results obtained here show that the thermal conductivity coefficients of the film and 
the superlattice at low and high temperatures are significantly lower than the thermal 
conductivity coefficient of the corresponding bulk structures, where thermal coefficient 
dependence from temperature is 3T: . This result is also practically applicable: a sandwich 
of several films would be a better thermal insulator than a bulk structure of the same 
thickness.  
Here presented theoretical results are compared with experimental data [14–21]. Our 
theoretically predicted results are in satisfactory agreement with experimental data. 
According to the Viedeman-Frantz rule, electrical conductivity is proportional to thermal 
conductivity. This leads to the conclusion that films and superlattices are weaker electrical 
conductors than bulk structures of the same material at low and high temperatures. 
For future research would be interesting to evaluate the superconducting properties of 
observed structures. The general behavior for today’s materials is that the worse conductors 
at the room temperature region, become the better superconductors at the low (cryogenic) 
temperature region. In such a way, the ultrathin films and superlattices could be structures 
with high superconductivity potential, not only for the low-temperature but also for the 
high-temperature region. 
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