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ABSTRACT 
The translational symmetry of the distribution of atoms (ions) of the charge carriers (electrons or 
holes) system is broken by sputtering (doping),and due to the existence of two boundary surfaces. 
This is a model of high-temperature superconductors in which the observed symmetry breaking 
orthogonal to the CuO plane is treated as a perturbation. Single-particle fermion wave functions 
and possible charge carrier energies were determined. The competing existence of superconducting 
and normal regions in such a sample is shown in agreement with experimental data. The conditions 
for the formation of superconducting states and the limits of the current density values in the planes 
parallel to the boundary surfaces (in the CuO planes) were obtained and discussed. 
 
1. INTRODUCTION 
High-temperature superconducting ceramics 
have "broken" the myth of an exclusively low-
temperature effect of superconductivity [1–4]. 
Although they were discovered and improved 
at the end of the last century, the mechanism 
of superconductivity has not been figured out 
to date. The biggest difficulty is their highly 
anisotropic structure (Figure 1). 
The answer to the question of the oxide 
ceramics superconductivity mechanism must 
be undoubtedly sought in the phonon 
subsystem, in the elementary charges 
subsystem as well as in the interaction of these 
subsystems. With regard to the very 
anisotropic structure of the superconductive 
ceramics [1,2], we have attempted to construct 
a theoretical model conveying the broken 
translational symmetry of atoms (molecules) 
arrangement along one direction in the crystal lattice, the difference of masses of these 
molecules and the presence of two boundary planes along this direction [5,6]. 
The phonon system is drawn out in this model [6]. We have determined the phonon states 
and their energy spectra and we have shown that, due to the broken crystal symmetry 

 
 

Figure 1: Model of high-temperature 
superconductors – CuO ceramics 
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(actually because of deformed and tiny granular structure), the phonons of optical type 
owning the energy gap are present here [7]. The next task that we have attempted to solve 
is to determine and analyse the spectra of free charge carriers (electrons or holes), Landau 
criterion, the probabilities of states, and entropy within the same model. The preliminary 
results are already presented [8,9].  
 
2. MODEL HAMILTONIAN 
In order to obtain Hamiltonian of the charge carriers in the structure with broken 
translational symmetry, it is most suitable to start with the standard Hamiltonian of the 
electron system in an ideal infinite structure [10–12]:   𝐻௜ௗ = ∑௞ሬ⃗ ℏమ௞ሬ⃗ మଶ௠∗ 𝐶௞ሬ⃗ା𝐶௞ሬ⃗                                                         (1) 
 where 𝑚∗ is electron effective mass, while 𝐶௞ሬ⃗ା and 𝐶௞ሬ⃗  are Fermi creation and annihilation 
operators of electrons with momentum ℏ𝑘ሬ⃗  and energy ℏଶ𝑘ሬ⃗ ଶ(2𝑚∗)ିଵ. If we go over to the 
configuration space using the transformations:   𝐶௞ሬ⃗ = ଵ√ே ∑௡ሬ⃗ 𝐶௡ሬ⃗ eି௜௞ሬ⃗ ௡ሬ⃗ ; 𝐶௞ሬ⃗ା = ଵ√ே ∑௡ሬ⃗ 𝐶௡ሬ⃗ାe௜௞ሬ⃗ ௡ሬ⃗                                 (2) 
 where 𝑁 is the number of molecules in the considered structure, we get:   𝐻௜ௗ = ∑௡ሬ⃗ Λ𝐶௡ሬ⃗ା𝐶௡ሬ⃗ − ∑௡ሬ⃗ ,௠ሬሬሬ⃗ 𝑊௡ሬ⃗ ௠ሬሬሬ⃗ 𝐶௡ሬ⃗ା𝐶௠ሬሬሬ⃗                                         (3) 

Here Λ = 𝑁ିଵ ∑௞ሬ⃗ ℏమ௞ሬ⃗ మଶ௠∗  and 𝑊௡ሬ⃗ ௠ሬሬሬ⃗ = −𝑁ିଵ ∑௞ሬ⃗ ℏమ௞ሬ⃗ మଶ௠∗ e௜௞ሬ⃗ (௡ሬ⃗ ି௠ሬሬሬ⃗ ). Due to the canonicity of the 
transformation (2), the operators 𝐶௡ሬ⃗ା and 𝐶௡ሬ⃗  are also Fermi operators.  

Let us recall the most important assumptions of our model: we consider the 
tetragonal i.e. generalized cubic structure with very high anisotropy along the 𝑧-axis. It 
means that the lattice constant in this direction (𝑎௭) is a few times larger than the lattice 
constant 𝑎௫, 𝑎௬ in the directions 𝑥 and 𝑦. The translational symmetry is fully conserved in 
the 𝑋𝑌 planes, while the symmetry of the masses arrangement along the 𝑧 direction is 
broken (during the doping of the ceramic structure by the introduction of foreign atoms, the 
sputtered atoms locate along this direction because it is energetically most convenient). We 
also assume here that the structure under consideration is a film (not necessarily thin!). It 
means that the components of lattice vector 𝑛ሬ⃗ ≡ (𝑛௫, 𝑛௬, 𝑛௭) vary in the following way:   𝑛௥ ∈ ቀ− ேೝଶ , + ேೝଶ ቁ , 𝑟 = (𝑥, 𝑦); 𝑛௭ ∈ [0, 𝑁௭].                             (4) 
The numbers of atoms 𝑁௫ and 𝑁௬ along the directions 𝑥 and 𝑦, respectively, may be 
indefinitely high since we have the translational symmetry along these directions. The 
number of atoms along 𝑧 direction (𝑁௭) is limited. The above-described model, i.e. the 
highly anisotropic matrix along the 𝑧 direction, necessarily doped with foreign atoms, can 
be used for getting some qualitative conclusions about the behaviour of the superconductive 
ceramic. It is known [1–3] that the ceramic oxides are anisotropic along one privileged 
direction and that the superconductive state is realised by doping. But the real structure of 
the ceramic oxides–perovskites is approximated by the tetragonal structure. It is also 
assumed in the model that the sputtering is symmetric on both boundary planes: 𝑛௭ = 0 and 𝑛௭ = 𝑁௭ and between the layers 𝑛௭ = 0 and 𝑛௭ = 1 (as well as between the layers 𝑛௭ =𝑁௭ − 1 and 𝑛௭ = 𝑁௭) 𝑛଴ foreign particles are placed, in such a way that the structure of the 
doped matrix is unchanged near the middle of the film.  
If the behaviour of the quantities from (3) may be expressed by the law:   𝑊௡ሬ⃗ ௠ሬሬሬ⃗ = ௐబ|௡ሬ⃗ ି௠ሬሬሬ⃗ |ℎ ; 𝑊଴ > 0;         ℎ > 0                                  (5) 
 in the nearest neighbors approximation we get:   𝑊௡ೞ;௡ೞ±ଵ ≡ 𝑊௦ = 𝑊଴𝑎௦ି ℎ; 𝑠 = (𝑥, 𝑦, 𝑧).                                       (6) 
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According to the described view of the doping, it is obvious that lattice constant 𝑎௭ in the 
doped structure becomes dependent on the position 𝑛௭, i.e. 𝑎௭ ⟶ 𝑎௭(𝑛௭). Because of the 
symmetry on the boundaries: 𝑎௭(0) = 𝑎௭(𝑁௭) = 𝑎௭(𝑛଴ + 1)ିଵ;  𝑎௭(𝑁௭/2) = 𝑎௭, we may 
take:   𝑎௭(𝑛௭) = 𝑎௭ ቀ1 − ௡బ௡బାଵ 𝑁௭ଶቁ ; 𝑁௭ଶ = 2𝑛௭𝑁௭ି ଵ − 1.                        (7) 
The dependence of the lattice constant on the index 𝑛௭ causes the dependence of the 
interaction along 𝑧 direction on the index 𝑛௭, i.e.:   𝑊௭ ⟶ 𝑊௭(𝑛௭) = 𝑊଴𝑎௭ି ℎ(𝑛௭) = 𝑊଴𝑎௭ି ℎ ቀ1 − 𝑁௭ଶ ௡బ௡బାଵቁିℎ ≈ 𝑊௭(1 + Φ𝑁௭ଶ), (8) 

where Φ = ℎ𝑛଴(𝑛଴ + 1)ିଵ. The interactions 𝑊௫ and 𝑊௬, according to the described picture, 
are unchanged. We must notice that the last two expressions are valid for even 𝑁௭. But, for 
large enough 𝑁௭ (𝑁௭ ≈ 𝑁௭ + 1), or during the transition from 𝑛௭ to continual variable 𝑧, 
the deviations from the formulas (7) and (8) for odd 𝑁௭ are not essential. The values of Λ 
are not dependent on the index of the site, because they are unchanged during the doping. 
Hence we can write the Hamiltonian of the doped structure in the form:   𝐻 = 𝐻୆ + 𝐻୚,                                                        (9) 
where:   
 𝐻୆ = ∑௡ೣ,௡೤ ቄ𝐶௡ೣ௡೤଴ା ቂΛ𝐶௡ೣ௡೤଴ − 𝑊௫ ቀ𝐶௡ೣାଵ,௡೤଴ + 𝐶௡ೣିଵ,௡೤଴ቁ − 

 − 𝑊௬ ቀ𝐶௡ೣ௡೤ାଵ,଴ + 𝐶௡ೣ௡೤ିଵ,଴ቁ − 𝑊௭(1 − Φ)𝐶௡ೣ௡೤ଵቃ +                         (10) 

 +𝐶௡ೣ௡೤ே೥ା ቂΛ𝐶௡ೣ௡೤ே೥ − 𝑊௫ ቀ𝐶௡ೣାଵ,௡೤ே೥ + 𝐶௡ೣିଵ,௡೤ே೥ቁ − 

 − 𝑊௬ ቀ𝐶௡ೣ௡೤ାଵ,ே೥ + 𝐶௡ೣ௡೤ିଵ,ே೥ቁ − 𝑊௭(1 − Φ)𝐶௡ೣ௡೤ே೥ିଵቃቅ, 
and, as we can see, it is related to the boundary layers (𝑛௭ = 0 and 𝑛௭ = 𝑁௭), where 
obviously 𝑊௡ೣ,௡೤,଴;௡ೣ,௡೤,ିଵ = 𝑊௡ೣ,௡೤,ே೥;௡ೣ,௡೤,ே೥ାଵ = 0, and for 𝐻୚ we find:   

 𝐻୚ = ∑௡ೣ,௡೤ ∑ே೥ିଵ௡೥ୀ଴ ቄ𝐶௡ೣ௡೤଴ା ቂΛ𝐶௡ೣ௡೤଴ − 𝑊௫ ቀ𝐶௡ೣାଵ,௡೤଴ + 𝐶௡ೣିଵ,௡೤଴ቁ − 

 − 𝑊௬ ቀ𝐶௡ೣ௡೤ାଵ,଴ + 𝐶௡ೣ௡೤ିଵ,଴ቁ − 𝑊௭(1 − Φ)𝐶௡ೣ௡೤ଵቃ +                         (11) 

 +𝐶௡ೣ௡೤ே೥ା ቂΛ𝐶௡ೣ௡೤ே೥ − 𝑊௫ ቀ𝐶௡ೣାଵ,௡೤ே೥ + 𝐶௡ೣିଵ,௡೤ே೥ቁ − 

 − 𝑊௬ ቀ𝐶௡ೣ௡೤ାଵ,ே೥ + 𝐶௡ೣ௡೤ିଵ,ே೥ቁ − 𝑊௭(1 − Φ)𝐶௡ೣ௡೤ே೥ିଵቃቅ. 
 

3. SINGLE-PARTICLE STATES OF THE SYSTEM 
We shall analyse the system described by Hamiltonian (9) using the orthonormalized 
single-electron state functions [12]:   |Ψ〉 = ∑௡ೣ,௡೤,௡೥ 𝐴௡ೣ,௡೤,௡೥𝐶௡ೣ,௡೤,௡೥ା |0〉; ∑௡ೣ,௡೤,௡೥ |𝐴௡ೣ,௡೤,௡೥|ଶ = 1.     (12) 
We obtain the equations for finding the coefficient 𝐴௡ೣ,௡೤,௡೥ using the equations of motion 
for operators 𝐶௡ೣ,௡೤,௡೥. From 𝐶௡ೣ,௡೤,௡೥(𝑡) = 𝐶௡ೣ,௡೤,௡೥(0)𝑒௜ఠ௧,  𝜔 = 𝐸/ℏ, it follows:   𝐸𝐶௡ೣ,௡೤,௡೥ − ቂ𝐶௡ೣ,௡೤,௡೥ , 𝐻ቃ ≡ 𝑂௡ೣ,௡೤,௡೥; 𝑂௡ೣ,௡೤,௡೥ = 𝑂.              (13) 
On the basis of equations (9 –11) and (13), we form operators 𝑂௡ೣ,௡೤,଴, 𝑂௡ೣ,௡೤,ே೥, and 𝑂௡ೣ,௡೤,௡೥. After applying them to the functions (12) and using the substitution:   𝐴௡ೣ,௡೤,௡೥ = 𝐴௡೥𝑒௜(௡ೣ௔ೣ௞ೣା௡೤௔೤௞೤)                                         (14) 

where 𝑘௝ = ଶగேೕ௔ೕ 𝜈௝; 𝑗 = (𝑥, 𝑦); 𝜈௝ ∈ ቀ− ேೕଶ , + ேೕଶ ቁ and on the basis of the fact that Λ =2 ∑௫௬௭ 𝑊௝, we find the following system of difference equations:   (𝐸 − 4𝑄 − 2𝑊௭)𝐴଴ + 𝑊௭(1 − Φ)𝐴ଵ = 0, 𝑛௭ = 0; 
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(𝐸 − 4𝑄 − 2𝑊௭)𝐴ே೥ + 𝑊௭(1 − Φ)𝐴ே೥ିଵ = 0, 𝑛௭ = 𝑁௭;                  (15) (𝐸 − 4𝑄 − 2𝑊௭)𝐴௡೥ + 𝑊௭(1 + Φ𝑁௭ଶ)൫𝐴௡೥ାଵ + 𝐴௡೥ିଵ൯ = 0,    1 ≤ 𝑛௭ ≤ 𝑁௭ − 1,  (16) 
where 𝑄 ≡ 𝑄௞ೣ௞೤ = 𝑊௫sinଶ ቀ௔ೣ௞ೣଶ ቁ + 𝑊௬sinଶ ቀ௔೤௞೤ଶ ቁ. We shall perform further analysis in 
the continual approximation in order to avoid the complications arising during the 
determination of the coefficient 𝐴௡ from the system of difference equations (15). 
Introduction the continual variable 𝑧 through 𝑛௭ → 𝑧/𝑎௭(𝑁௭ → 𝐿/𝑎௭) causes the following 
transformations of the expressions (7) and (8):   𝑎௭;௡೥ → 𝑎௭(𝑧) = 𝑎௭ ൤1 − ௡೚௡೚ାଵ ቀ2 ௭௅ − 1ቁଶ൨ , 𝑊௭;௡೥ → 𝑊௭(𝑧) = 𝑊௭ ൤1 + Φ ቀ2 ௭௅ − 1ቁଶ൨ .(17) 

The coefficients 𝐴௡೥ will be transformed in the following way:  

 
𝐴௡ → 𝐴(𝑧); 𝐴௡ାଵ + 𝐴௡ିଵ → 𝐴(𝑧 + 𝑎ത௭) + 𝐴(𝑧 − 𝑎ത௭),∗ 1.0𝑚𝑚𝐴(𝑧 ± 𝑎ത௭) ≈ 𝐴(𝑧) ± 𝑎ത௭ ௗ஺ௗ௭ + ௔ത೥మଶ ௗమ஺ௗ௭మ ; 𝑎ത௭ ≡ 𝑎ത௭(𝑧) = ଵ௅ ∫௅଴ 𝑑𝑧𝑎௭(𝑧) = 𝑎௭ ଶ௡೚ାଷଷ(௡೚ାଵ) .  

The important consequence of the transition to the continuum is the fact that the first two 
equations from (15) vanish from the calculation at 𝑛௭ → 𝑧, i.e. they are merged into the last 
of equations from (15), which is the continual approximation has the form:   ௗమ஺ௗ௭మ + ாିସொିΦ(ாିସொିଶௐ೥)ቀଶ೥ಽିଵቁమ௔ത೥మ(௭)ௐ೥ 𝐴 = 0.                                     (18) 
By the assumption:   𝐸 > 4𝑄 + 2𝑊௭ ≡ 𝐸௭(଴)                                                     (19) 
and by the substitution: 2𝑧/𝐿 − 1 = 𝜏𝜁, with 𝜏ସ = 𝑊௭(𝑎ത௭𝐿)ଶ[4Φ(𝐸 − 4𝑄 − 2𝑊௭)]ିଵ, the 
equation (17) becomes known Hermite-Weber equation:   ௗమ஺ௗ఍మ + (𝜅 − 𝜁ଶ)𝐴 = 0                                                     (20) 

where 𝜅 = ௅ଶ௔ത೥ (𝐸 − 4𝑄)ቂΦ(𝐸 − 𝐸௭(଴))𝑊௭ቃିଵ/ଶ
. Here we introduce the requirement that the 

amplitudes 𝐴 are finite for arbitrary structure thickness (it means even for 𝐿 → ∞ too). For 
satisfying this requirement we must take the known condition of the finiteness for the 
solutions for Hermite-Weber equation: 𝜅 = 2𝜇 + 1; 𝜇 = 0,1,2, … On the basis of this, we 
find:   𝐸ଵ,ଶ = 4𝑄 + 2𝑏ଶ(2𝜇 + 1)ଶΦ𝑊௭ ൜1 ± ቂ1 − ଶ(ଶఓାଵ)మ௕మΦ

ቃଵ/ଶൠ               (21) 
were 𝑏 = 𝑎ത௭/𝐿. The expression for energies (20) indicates that index 𝜇 must be limited 
from below (the energies must be real):   2𝜇 ≥ 𝑏ିଵඥ2/Φ − 1.                                                (22) 
It means that the minimum allowed value of the index 𝜇 is the minimal integer which is 
bigger than the final term in (20). As we can see, the lower boundary of quantum number 𝜇 depends on the number of structural layers (through 𝑁௭), on the way of sputtering 
(through 𝑛଴), and on the type of ion-ion interaction (through ℎ). If the thickness of the 
structure increases, the lower value of 𝜇 increases too.  
For simplification, instead of the expression (20), we will use the approximate expressions 
for energies, which we obtain by the expansion of the square root up to the quadratic terms:   𝐸ଵ = 𝐸௭(଴) + 4𝑏ଶ(2𝜇 + 1)ଶΦ𝑊௭ − ௐ೥ଶ(ଶఓାଵ)మ௕మΦ

                        (23) 
and   𝐸ଶ = 𝐸௭(଴) + ௐ೥ଶ(ଶఓାଵ)మ௕మΦ

.                                                     (24) 
 It is very easy to notice that both obtained expressions for energies satisfy the necessary 
condition (18). However, by the analysis of (22) and (23), we can conclude the following. 
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 Since 𝐸ଶ < 𝐸ଵ, the states with energy 𝐸ଶ are more stable and more populated and so 
they essentially define the normal behavior of the system.  

 From expressions (21) and (23) it follows that the increase of film thickness (the 
increase of 𝑁௭) causes the increase of the lower boundary of the index 𝜇, and the 
correction of 𝐸ଶ, which depends on sputtering, decreases. This is in complete agreement 
with the conclusions that we can accomplish without going over to continuum, i.e. 
directly analysing discrete eq.s (15).   

We can see in expressions defining 𝜁 – text under (18), that the boundaries of the interval 
for 𝜁 are proportional to 𝐿/𝑎ത௭ = 𝑏ିଵ and so we can approximately take: 𝜁 ∈ [−∞, +∞], 
where the approximation is better if the film is thicker. We can then express the solutions 
of equation (19) using Hermite polynomials:   𝐴ఓ(𝜁) = ௘షഅమ/మ൫ଶഋఓ!√గ൯భ/మ 𝐻ఓ(𝜁); 𝐻ఓ(𝜁) = (−1)ఓ𝑒఍మ ௗഋௗ఍ഋ (𝑒ି఍మ)𝜇 = 0,1,2, …(25) 

In this way we have defined single-particle degenerate states of the system: for the wave 
functions – by the equations (12), (14), and (24) and for energies – by (20).  
 
4. CHARGE CARRIERS DISPERSION LAW 
We shall perform the diagonalization of the electron Hamiltonian in the following stages. 
1) In the framework of the continual approximation, Hamiltonian 𝐻஻ "melted" in 

Hamiltonian 𝐻௏ using the formulas for transition to continuum:  

 𝐶௡ೣ௡೤௡೥ → 𝐶௡ೣ௡೤(𝜁); 𝑊௭ ൤1 + ସΦ௅మ ቀ𝑧 − ௅ଶቁଶ൨ → 𝑊௭ ቀ1 + ସΦఛഋ௅మ 𝜁ଶቁ . 
(Because of the transformation 𝑛௭ → 𝑧 → 𝜏𝜁, it is obvious that the sum over 𝑛௭ must be 
changed by integral over 𝜁:  ∑௡ೣ௡೤௡೥ ⟶ 𝜏𝑎ത௭ି ଵ ∑௡ೣ௡೤ ∫∞ି∞ 𝑑𝜁).  

2) From the operators 𝐶௡ೣ௡೤(𝜁) we go over to new operators 𝐶௞ೣ௞೤ఓ using the canonical 
transformations:   𝐶௡ೣ௡೤(𝜁) = ∑௞ೣ௞೤ఓ 𝐴௡ೣ௡೤௞ೣ௞೤ (𝜇, 𝜁)𝐶௞ೣ௞೤ఓ.                                    (26) 

Therefore we can write Hamiltonian 𝐻௏ in the continual approximation in the form:   
 𝐻୚ ⟶ 𝐻 = ఛ௔೥ ∑௡ೣ௡೤ ∫∞ି∞ 𝑑𝜁𝐶௡ೣ௡೤ା (𝜁) ቄΛ𝐶௡ೣ௡೤(𝜁) − 

 −𝑊௫ ቂ𝐶௡ೣାଵ,௡೤(𝜁) + 𝐶௡ೣିଵ,௡೤(𝜁)ቃ − 𝑊௬ ቂ𝐶௡ೣ௡೤ାଵ(𝜁) + 𝐶௡ೣ௡೤ିଵ(𝜁)ቃ − 

 − 𝑊௭ ቀ1 + ସΦఛమ௅మ 𝜁ଶቁ ൤2𝐶௡ೣ௡೤(𝜁) + ௔ത೥మఛమ ௗమ஼೙ೣ೙೤(఍)ௗ఍మ ൨ൠ.                                  (27) 
We can now perform the diagonalization of Hamiltonian. After the substitutions (26) into 
(27) we have:   𝐻 = 𝜏𝑎ത௭ ෍௞ೣ௞೤ఓ ෍௤ೣ௤೤ఔ 𝐶௤ೣ௤೤ఔା 𝐶௞ೣ௞೤ఓ ෍௡ೣ௡೤ න∞

ି∞
𝑑𝜁 ቂ𝐴௡ೣ௡೤௤ೣ௤೤ (𝜈; 𝜁)ቃ∗ ቄΛ𝐴௡ೣ௡೤௞ೣ௞೤ (𝜇; 𝜁) − 

−2𝑊௫ ቂ𝐴௡ೣାଵ,௡೤௞ೣ௞೤ (𝜇; 𝜁) + 𝐴௡ೣିଵ,௡೤௞ೣ௞೤ (𝜇; 𝜁)ቃ − 2𝑊௬ ቂ𝐴௡ೣ௡೤ାଵ௞ೣ௞೤ (𝜇; 𝜁) + 𝐴௡ೣ௡೤ିଵ௞ೣ௞೤ (𝜇; 𝜁)ቃ − − 2𝑊௭ ቀ1 + ସΦఛమ௅మ 𝜁ଶቁ ൥2𝐴௡ೣ௡೤௞ೣ௞೤ (𝜇; 𝜁) + ௔ത೥మఛమ ௗమ஺೙ೣ೙೤ೖೣೖ೤ (ఓ;఍)ௗ఍మ ൩ൡ.                            (28) 

On the basis of (14) one can write: 𝐴௡ೕାଵ௞ೣ௞೤ (𝜇; 𝜁) + 𝐴௡ೕିଵ௞ೣ௞೤ (𝜇; 𝜁) = 2𝐴௡ೣ௡೤௞ೣ௞೤ (𝜇; 𝜁)cos(𝑎௝𝑘௝),  𝑗 = (𝑥, 𝑦). If we substitute 𝐸 with 𝐸௞ೣ௞೤ఓ and 𝑧 with 𝜁 in the last of (15), we find 𝑊௭(1 +ସΦఛమ௅మ 𝜁ଶ) ቂ2𝐴ఓ(𝜁) + ௔ത೥మఛమ ௗమ஺ഋ(఍)ௗ఍మ ቃ = ቀ𝐸௭(଴) − 𝐸௞ೣ௞೤ఓቁ 𝐴ఓ(𝜁), which yields  
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 𝑊௭ ቀ1 + ସΦఛమ௅మ 𝜁ଶቁ ൥2𝐴௡ೣ௡೤௞ೣ௞೤ (𝜇; 𝜁) + ௔ത೥మఛమ ௗమ஺೙ೣ೙೤ೖೣೖ೤ (ఓ;఍)ௗ఍మ ൩ = ቀ𝐸௭(଴) − 𝐸௞ೣ௞೤ఓቁ 𝐴௡ೣ௡೤௞ೣ௞೤ (𝜇; 𝜁). 
Using this and the orthonormalization condition from (12), we diagonalize the expression 
(28) for Hamiltonian of the system:   𝐻 = ∑௞ೣ௞೤ఓ 𝐸௞ೣ௞೤ఓ𝐶௞ೣ௞೤ఓା 𝐶௞ೣ௞೤ఓ.                                       (29) 
This expression represents the Hamiltonian of the electron subsystem which was the subject 
of this study. Together with Hamiltonian of the phonon subsystem derived earlier [5–7], it 
enables the continuation of the investigation of superconductivity mechanism in high-
temperature oxide ceramics. Analyses performed until now enable us to conclude that the 
theoretical model of symmetrically deformed structures satisfies the basic experimental 
indicators of superconductive perovskites behavior. It is primarily related to the proved 
presence of a gap in the spectrum of elementary excitations in this system (phonons or 
electrons) and its behavior in the structures with different stoichiometry. The question of 
the interaction between the subsystem of elementary charges and the subsystem of phonons 
(optical type) is still open; this question is crucial for the understanding of the nature of the 
new superconductive state.  
 
5. ESTIMATE OF SYSTEM ORDERING 
In this section of the paper, we shall analyse Landau superfluidity criterion and determine 
the probabilities of states and entropy of the system. Landau criterion for superfluid motion 
is min 𝑣 > 0, where 𝑣 = 𝐸(𝑝)/𝑝. The expression for energies (20) (using the 
approximations: 𝑎௫ ≅ 𝑎௬ ≡ 𝑎, 𝑎௭ ≅ 3𝑎,  𝑊௫ ≅ 𝑊௬ ≡ 𝑊,  𝑊௭ = 𝑊/3ℎ,  sin𝛼 ≃ 𝛼, 𝑘௫ =𝑘 sin𝜃cos𝜑, 𝑘௬ = 𝑘sin𝜃sin𝜑,𝑘௭ = 𝑘cos𝜃) yields the following expression:   𝐸ଵ;ଶ(𝑝) = ௐ௔మ

ℏమ ൣ𝑝ଶsinଶ𝜃 + 𝑔±ଶ (𝜇)൧                                       (30) 
where 𝑔±ଶ (𝜇) = 23ିℎℏଶ𝑎ିଶ𝑓ଶ(𝜇)ൣ1 ± ඥ1 − 2𝑓ିଶ(𝜇)൧;  𝑓ଶ(𝜇) = 𝑏ଶ(2𝜇 + 1)ଶΦ. For the 
phase velocity we get:   𝑣ଵ;ଶ(𝑝) = ாభ;మ(௣)௣ = ௐ௔మ

ℏమ ቂ𝑝sinଶ𝜃 + ଵ௣ 𝑔±ଶ (𝜇)ቃ                            (31) 
The condition 𝑑𝑣/𝑑𝑝 = 0 yields  𝑝௘ = 𝑔±(𝜇)sinିଵ𝜃. Because of 𝜃 ∈ [0, 𝜋] ⇒ 𝑣ଵ,ଶଶ ≥ 0, 
and because 𝑔ା ≥ 𝑔ି ⇒ 𝑣ଵଶ ≥ 𝑣ଶଶ. It follows that the state with the energy 𝐸ଵ has more 
expressive minimum than the state with the energy 𝐸ଶ. For the second derivative we get:   ௗమ௩భ;మௗ௣మ |௣ୀ௣೐ = 2𝑊𝑎ଶℏିଶ𝑔±ିଵ(𝜇)sinଷ𝜃 ≥ 0                            (32) 
We can see that the known – Landau criterion is satisfied for both energies, but it is 
"stronger" for the states with the energies 𝐸ଵ(≥ 𝐸ଶ) because 𝐸ଵ has a bigger gap than 𝐸ଶ.  
We shall now determine the probability of the state of the system under consideration. If 
we introduce the notation   𝜖ଵ;ଶ ≡ 𝐸ଵ;ଶ − 𝐸௭(଴) = 2𝑊௭ൣ3ℎ𝑎ଶℏିଶ𝑔௣௠ଶ (𝜇) − 1൧                    (33) 
we can find – see text under the (18):   𝜏ଵ;ଶ = ቀ௔ത೥ଶ 𝐿ቁଵ/ଶ ൫Φ𝜖ଵ;ଶ𝑊௭ି ଵ൯ିଵ/ସ                                  (34) 
Then the wave function (12) has the form:   

Ψଵ;ଶ(𝑘௫, 𝑘௬, 𝑘௭) = ఛభ;మ௔ത೥ ∑௡ೣ௡೤ ∫ା∞ି∞ 𝑑𝜁|𝐴௡ೣ௡೤௞ೣ௞೤ (𝜇; 𝜁)|ଵ;ଶ𝐶௡ೣ௡೤ା |0〉              (35) 

where |𝐴௡ೣ௡೤௞ೣ௞೤ (𝜇; 𝜁)|ଵ;ଶ = 𝑁ଵ;ଶ𝑒௜(௡ೣ௔ೣ௞ೣା௡೤௔೤௞೤)𝐴ఓ(𝜁) and norm-factor is defined on the 

following way 𝑁ଵ;ଶ = 𝑎ത௭൫𝑁௫𝑁௬𝜏ଵ;ଶ൯ିଵ. The probability of finding the elementary charges 
with the energy 𝐸ଵ (and 𝐸ଶ), in agreement with (35), is:   
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𝑃ଵ;ଶ(𝜇; 𝜁) = ቀఛభ;మ௔ത೥ ቁଶ |𝐴௡ೣ௡೤௞ೣ௞೤ (𝜇; 𝜁)|ଵ;ଶଶ = 𝑁௫ି ଶ𝑁௬ି ଶ𝐴ఓଶ(𝜁)                       (36) 
wherefrom:   𝑃ଵ(𝜇; 𝜁) = 𝑃ଶ(𝜇; 𝜁) ≡ 𝑃ఓ(𝜁)                                              (37) 
On the basis of the last expression, we can see that both states appear with equal 
probabilities!  
The entropy of the system under consideration is:   𝑆ଵ;ଶ(𝜇) = − ఛభ;మ௔ത೥ 𝐼(𝜇)                                                    (38) 

where the integral 𝐼(𝜇) ≡ ∫ା∞ି∞ 𝑑𝜁𝑃ఓ(𝜁)ln𝑃ఓ(𝜁) is need not be calculated, since, from (4.9) 
and (34), it follows:   ௌభ(ఓ)ௌమ(ఓ) = ఛభఛమ ≡ ቀఢమఢభቁଵ/ସ ≤ 1 ⟹ 𝑆ଵ(𝜇) ≤ 𝑆ଶ(𝜇)                                (39) 
(Since 𝐸ଵ ≥ 𝐸ଶ, we get 𝜖ଵ;ଶ ≥ 0 and 𝜖ଵ ≥ 𝜖ଶ). This expression yields that the states Ψଶ 
(with 𝐸ଶ) are less ordered than the states Ψଵ (with 𝐸ଵ). It means that the states with 𝐸ଵ (with 
higher energy and lower population) are probably responsible for superconductive effects 
in the observed system. The states with 𝐸ଶ (with lower energy and higher population) are 
responsible for the normal behaviour of this system. This is in agreement with the above 
comments about these two possible energies.  
 
6. CONCLUSION REMARKS 
The particular features of high-temperature superconductors on the basis of oxide ceramics 
are their granular structure and the anisotropy of properties. The existence of the weak 
isotopic effect and Cooper pairs of charge carriers is experimentally verified, similar in the 
conventional superconductors, but BCS model was not able to explain high critical 
temperature. For that reason and on the basis of established experimental results [1–3,13–
15], we have proposed the model of ceramic structure as tetragonal i.e. generalised cubic 
structure in which interatomic distances along one direction are a few times bigger than 
along the other two directions. It is, energetically, most convenient if the sputtered atoms 
locate themselves just along this direction.  
The analysis of the phonon spectrum in our model yields that we have phonon branches of 
optical type only in the spectrum (there exists an energy gap). It means that for phonon 
excitation it is necessary that the energy (heat) is bigger than the energy gap.  
The analysis of the electron spectrum in these symmetrically deformed structures (with 
respect to the planes 𝑛௭ = 0 and 𝑛௭ = 𝑁௭) yields that, as a consequence of the existence of 
the boundaries along z axes, we have two energy branches in the spectrum of charge 
carriers. The lower value of energy is related to more populated states and contains the term 
depending on the sputtering. This term decreases with increasing the film thickness. The 
higher value of energy in the spectrum of charge carriers is not particularly analysed 
because these levels are low populated.  
In addition to this, in the framework of the model under consideration, we have determined 
the orthonormalized single-particle state functions of this system, entropy, and the 
probabilities of possible states. The theoretical investigation in the framework of the 
presented model is not finished. It is necessary to form Hamiltonian of the interaction 
between charge carriers and phonons and separate from it the essential part only, which 
describes the formation of Cooper pairs. Only after this, the thermodynamical analysis of 
the complete system follows. 
 
 
 



240 

7. ACKNOWLEDGMENTS 
The research presented in this paper was financially supported by the Ministry of Scientific 
and Technological Development, Higher Education and Information Society of the 
Republic of Srpska (Projects No. 19.032/961-36/19 and 19.032/961-42/19). 
 
8. REFERENCES   
[1] J. G. Bednorz and K. A. Müller: Perovskite-Type Oxides – the New Approach to High-𝑇௖ 

Superconductivity;  Nobel Lecture, Stockholm, December 8, (1987) 
[2] P. H. Hor, et.al, Superconductivity above 90 K in the square-planar compound system 

ABa2Cu3O6+x with A=Y,La,Nd,Sm,Eu,Gd,Ho,Er and Lu, Phys.Rev.Lett. 58, 1891 (1987) 
[3] A. A. Abrikosov: Theory of High−Tc Superconducting Cuprates Based on Experimental 

Evidence, http://www.lanl.gov./find/cond.mat. No: 9912394 (1999) 
[4] N. M. Plakida: High-Temperature Superconductors, Springer-Verlag, Berlin 1995 
[5] B. S.Tošić, J. P. Šetrajčić, R. P. Djajić and D. Lj. Mirjanić; Phonons in Broken-Symmetry 

Structures, Phys.Rev. B 36, 9094 (1987) 
[6] J. P. Šetrajčić, R. P. Djajić, D. Lj. Mirjanić and B. S. Tošić; Phonon Spectra in Superconducting 

Ceramics, Phys. Scr. 42, 732 (1990) 
[7] J. P. Šetrajčić, V. M. Zorić, N. V. Delić, D. Lj. Mirjanić and S. K. Jaćimovski, Phonon 

Participation in Thermodynamics and Superconductive Properties of Thin Ceramic Films, 
Chapter 15, pp. 317-348, In „Thermodynamics”, Ed. M. Tadashi, ISBN: 978-953-307-544-0, 
InTech, Vienna (Austria) 2011; Available from:  

[8] http://www.intechopen.com/articles/show/title/phonon-participation-in-thermodynamics-and-
superconductive-properties-of-thin-ceramic-films 

[9] J. P. Šetrajčić, S. M. Vučenović and S. K. Jaćimovski, Possible States of Charge Carriers in 
Thin Multilayered Superconductive Ceramics, Zaštita Materijala 57/2, 239-243 (2016) 

[10] S. M. Vučenović, J. P. Šetrajčić and D. I. Ilić, Superconductivity of Lanthanum Hydride To 
250 K, Proceedings 12th ContMat (ISBN 978-99976-42-30-1), 91-103 (2020). 

[11] Ch. Kittel, Introduction to Solid State Physics, Wiley, New York 2004 
[12] P. Hoffmann, Solid State Physics, Wiley, New York 2015 
[13] S. M. Girvin and K. Yang, Modern Condensed Matter Physics, Cambridge Univ. Press, 

Cambridge 2019 
[14] R. Simon; High‐𝑇c Thin Film and Electronic Devices, Physics Today 44, 64 (1991) 
[15] D. R. Harshman and A. P. Mills, Phys.Rev. B 45, 10684 (1992) 
[16] W. E. Pickett Rev. Mod. Phys. 61, 433 (1989) 


