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ABSTRACT 
Finite element simulations of a fixed-ratio mode-mixity test (single configuration) are performed 
using cohesive zone model. Different simulation parameters are varied: automatic stabilisation, 
cohesive element viscosity and mesh size. A global and local approach are presented and used for 
calculation of energy release rate contribution from mode I and mode II fracture in the simulations. 
The simulations and fracture energy calculation results are evaluated and compared, leading to 
recommendation for the parameter selection in the finite-element simulation of similar problems. 
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SAŽETAK 
U radu su sprovedene simulacije, jedne konfiguracije pokusa delaminacije s konstantnim omjerom 
energija loma pri kombiniranom tipu loma (engl. fixed-ratio mode-mixity test), koristeći metod 
konačnih elemenata s modelom kohezivne zone. U simulacijama su mijenjani različiti parametri: 
automatsko stabiliziranje, viskoznost kohezivnih elemenata i veličina mreže. Prikazani su i 
primijenjeni globalni i lokalni pristup za proračun učešća tipa I i tipa II loma u ukupnoj energiji 
loma. Sprovedene simulacije i rezultati proračuna energije loma su evaluirani i uspoređeni, iz čega 
su proistekle određene preporuke za odabir parametara u simulacijama sličnih problema korištenjem 
metode konačnih elemenata. 
 
Ključne riječi: kombinirani tip loma, numerička simulacija, FRMM pokus 
 
1. INTRODUCTION 
This work is conducted as a part of a wider international activity on mixed mode fractures in 
beam-like geometries under the coordination of European Structural Integrity Society, 
Technical Committee 4, ESIS-TC4 [1]. The ultimate goal of the project is to develop 



(combining analytical, numerical and experimental investigations) a new testing protocol 
with recommendations for the accurate determination of the fracture mode-mixity.  
In the first phase of project, the fixed-ratio mode-mixity test (FRMM) is considered and 
fracture energy is partitioned analytically and numerically by simulations without damage 
development [2]. In the second phase, involvement of damage development in simulations is 
intended, and here, as a preparation (a warm-up case) for the wider investigation, a single 
FRMM test configuration (Figure 1) delamination is simulated numerically using cohesive 
zone in commercial software Abaqus, based on finite-element method (FEM). 
Since FEM simulations suffer from ever present uncertainties related to the selection of the 
simulation parameters, present work attempts to shed some light and provide 
recommendations for the FEM modelling and analyses of delamination in beam-like 
geometries, in particular the FRMM test, which will be used as guidelines for further 
investigations of the problem. Simulation parameters which are investigated are: automatic 
stabilisation, cohesive elements viscosity, and mesh size. The mesh size is in particularly 
analysed regarding a number of cohesive elements in a damage zone.  
For the numerical mixed-mode partitioning, i.e. calculation of energy release rate 
contribution from mode I and mode II fracture in delamination, a global and a local approach 
are used and presented.  It has to be noted that the term ‘global’ means ‘integration of energy 
over cohesive zone’, whereas ‘the local approach’ considers ‘integration of energy going into 
a single cohesive element‘. 
 
2. FRMM TEST CONFIGURATION, FEM MODEL AND FEM SIMULATION 

SETUP 
Figure 1 shows the double 
cantilever beam (DCB) 
specimen geometry and 
FRMM test configuration used 
in this work. The DCB-FEM 
model is made from two 
separate identical beams 
(parts) with coincident and 

connected nodes along a half of the length (dashed line) with zero-thickness cohesive 
elements (nominal thikness 1). The other half of beams have unconnected coincident nodes, 
representing the pre-crack. No surface interaction is modelled between beams because two 
pre-crack surfaces are separated immediately at the test initiation. Abaqus CPE4 (4-node 
bilinear plane strain quadrilateral) elements are used in two uniform mesh sizes (Figure 2) for 
modelling beams and COH2D4 (4-node two-dimensional cohesive) elements for modelling 
cohesive zone. Rotation is applied incrementally at the end of the top beam which is set to be 
rigid (nodes at the end line are connected into the rigid body) and the other ends of the beams 
are fixed. Abaqus/Standard one step analysis with geometric nonlinearity accounted is used 
with the automatic step incrementation. The base model material is linear elastic, isotropic 
with the modulus of elasticity 50GPa and Poisson’s ratio 0.38. 
 

 
Figure2. FEM meshes. 

 

Figure 1.FRMM test configuration. 



2.1. Cohesive traction-separation model 
Cohesive zone response is modelled using a traction-separation model, with uncoupled intial 
linear elastic behaviour that for a two-dimensional problem can be writen as [3]: 
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where t is the nominal traction stress vector (normal and shear tractions), K is the elasticity 
matrix and ε is the nominal strain vector. Since nominal strains are defined as separations in 
two directions ( , )δ δn s  divided by the nominal thickness that is equal to 1 by default, nominal 
strains are equal to the separations (see Section 3.1). Uncoupled elasticity matrix is defined 
with arbitraly high set value of stifness 1510  Pa= =nn ssK K . 
Element damage initiation is defined using the quadratic nominal stress criterion: 
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where 45 MPa= =o o
n st t , representing the peek stress values when the deformation is either 

purely normal or purely in the shear direction (intrelaminar strength).  
Damage evolution is described with the scalar damage variable, D, which represents the 
overall damage in the material. D initially has a value of 0, and after damage initiation 
monotonically evolves from 0 to 1 in the moment of failure. The stress components of the 
traction-separation model are affected by the damage according to: 
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where nt and st  are the stress components predicted by the elastic traction-separation behaviour 
for the current strains without damage. 
There are quite a few different ways to define damage evolution in Abaqus which differ 
firstly in a way how the point of complete failure is described: in terms of displacements or 
energy dissipated. Second difference is how the nature of the evolution of the damage 
variable, D, between initiation of damage and final failure is specified. The damage evolution 
laws also include fracture mode-mixity dependence. In this work the linear damage evolution 
based on energy is used, with critical fracture energy in a value of 2200 J/m= = =C C C

I IIG G G , 
where dependence of the fracture energy on the mode mixity is given with the power law 
fracture criterion: 
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where IG  and IIG refer to the work done by the traction in the normaland the shear directions, 
respectively, and C

IG and C
IIG refer to the critical fracture energies required to cause failure in 

the normal and the shear directions, respectively.  
 Using power parameter =1 equation (4) becomes: 

+ = C
I IIG G G , …(5) 

where I and II indicate energy associated with mode I and mode II fracture, respectively.  
A more detailed explanation of traction-separation model can be found in [3]. 
 
2.2. Convergence improvement techniques 
One of the main drawbacks of numerical simulation of delamination in beam-like geometries 
is that material models exhibiting softening behaviour and stiffness degradation often lead to 



severe convergence difficulties. Common techniques to overcome these convergence 
difficulties are use of viscous regularisation of the cohesive element’s constitutive equations 
and including automatic stabilisation in procedure [3]. 
Viscous regularisation process involves the use of a viscous stiffness degradation variable, 

vD , which is defined by the evolution equation: 
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where μ is the viscosity parameter representing the relaxation time of the viscous system and 
D is the damage variable evaluated in the backbone model without viscosity. Viscosity 
regularise the traction-separation laws by permitting stresses to be outside the limits set by 
the traction-separation law. Using viscous regularisation with a small value of the viscosity 
parameter (small compared to the characteristic time increment) usually helps improve the 
rate of convergence of the model in the softening regime, without compromising results. 
Different values of the viscosity parameter are used and investigated. 
Automatic stabilisation is an automatic mechanism for stabilising unstable problems through 
the automatic addition of volume-proportional damping to the model. The mechanism adds 
viscous forces of the form: 

*=vF c vM , …(7) 
to the global equilibrium equations, where *M is an artificial mass matrix calculated with unit 
density, c  is a damping factor and v is the vector of nodal velocities. The damping factor is 
defined with a dissipated energy fraction, a small fraction of extrapolated strain energy 
calculated during the first increment. In the simulations adaptive automatic stabilisation 
scheme is used, where the damping factor is also controlled by the convergence history and 
the ratio of the energy dissipated by viscous damping to the total strain energy. The ratio is 
limited by an accuracy tolerance value imposed on the global level for the whole model. Only 
default values of 2.0×10–4 for the dissipated energy fraction and 0.05 for the accuracy 
tolerance are used.  
A more detailed explanation of convergence improvement techniques can also be found in 
[3]. 

 
3. ENERGY RELEASE RATE CALCULATION 
Although energy release rate partitions are included into the cohesive element’s damage 
evolution equations (4), their individual values are not available as Abaqus simulation output 
variables so they must be calculated by integrating (numerically) outputs for stresses and 
strains (tractions and separations). Partitioning methods found in literature can be classified 
as ‘local approach’ and ‘global approach’ based on the size of a cohesive zone included in the 
calculations (one or more cohesive elements). 
 
3.1 Local partitioning: Integration of energy going into a single cohesive element 
Mode I and mode II energy release rate components for a point in a cohesive zone can be 
calculated by integration of traction-separation curves [4]:  
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where ,δ δnm tm  are maximum (final) opening and shearing displacements of the cohesive 
elements, ,δ δn t  are opening and shearing displacements of the cohesive elements and ,σ τ are 
normal and shear stresses (tractions nt  and st ). 
These integrals are numerically calculated using output values for a cohesive element 
integration point via trapezoidal rule: 
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where n  is the total number of analysis increments, ,  σ τ are stress components (Abaqus 
identifiers s22 and s12) and ,  δ δn t nominal strain components (Abaqus identifiers ne22 and 
ne12) for a given increment i (i+1). As already mentioned, the values of the strain 
components are equal to the values of the displacements if the nominal thickness of cohesive 
elements is set to 1. 
Since results obtained with the integrations show quite deviation between two integration 
points in a cohesive element, relevant values for a cohesive element were finally obtained 
with averaging values for two integration points in the element: 
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3.2 Global partitioning: Integration of energy over cohesive zone 
Once damage region is fully developed, self-similar crack propagation will exist in cohesive 
zone and the following integrations can then be performed along the cohesive surfaces in 
order to obtain the global mode I and mode II energy release rates [5],[6]: 
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where l is the length of integrated cohesive zone, ,δ δn t  are opening and shearing 
displacements of the cohesive elements, ,σ τ  are normal and shear stresses and axis x  
coincide with a  crack propagation direction. Generally, the integration should be done only 
over the damaged cohesive zone. However, since it is not easily to define the damage zone 
boundaries, in this work it was more practical to assume longer zone, ie. almost whole 
cohesive zone, excluding only few cohesive elements at the fixed end (under the influence of 
the fixed boundary condition). Contributions in the above integrals, from the cohesive 
elements that have already collapsed or are not damaged, are zero or near zero so they do not 
have significant influence on the integration results. 
Above integrals are numerically calculated using output values for cohesive elements: 
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where n  is the number of cohesive element nodes on bottom or top surface of cohesive 
elements included in integration (with identical values of stress and strain), ,  σ τ are stress 
components and ,  δ δn t are nominal strain components. Values of stresses and strains are 
averaged to the nodes between adjacent cohesive element integration points, and they are 
taken in the last increment before the cohesive element in the current crack tip collapses i.e. 
in the increment when it reaches maximum degradation. 
 
4. ABAQUS SIMULATIONS 
4.1. The first set of simulations: viscous regularisation vs. automatic stabilisation 
The first set of simulations has been performed to investigate the influence of the viscous 
regularisation and the automatic stabilisation, as techniques for achieving convergence, on 
delamination simulations performance (using previously described FRMM test and Abaqus 
configuration). Although a recommended method for monitoring their influence on an 
analysis is to compare the energy associated with viscous regulation and automatic 
stabilisation with overall energy of the model or set of elements and ensure that the ratio does 
not exceed any reasonable amount [3], a different approach is used in this work. If a steady 
state crack propagation in FRMM test is achieved, a constant moment acting on an upper 



beam (with appropriate motion) should maintain it. Therefore, if the viscosity or stabilisation 
has no great influence on the stiffness and behaviour in delamination simulation, reaction 
moment on the rigid body, where boundary rotation is applied, should also be constant in a 
reasonable range during delamination process. Therefore, a constant trend of the reaction 
moment after delamination onset is used as a criterion for evaluating accuracy of simulations. 
Eight FRMM test simulations with different configurations are performed, without and with 
three different cohesive element viscosity values and with or without including automatic 
stabilisation (with Abaqus default set-up values). Mesh size for all models is 240x12 (element 
size 0.5x0.5 mm) and 0.2 rad (11.5°) rotation boundary condition is applied on the top beam 
end in the 20 second step with automatic incrementation. Beside the reaction moment, 
following parameters are also evaluated (see Table 1): convergence, number of increments, 
crack and damage zone propagation length. 
 

Table 1. The first set of simulations configurations and overview of results 

Configuration Stabilisation Viscosity
parameter Convergence Increments

(automatic)
Crack 
(mm) 

Damage
(mm)

A1 

NO 

0 NO / / / 
A2 10-1 YES 23 2 4 
A3 10-3 YES 1394 40.5 43 
A4 10-5 YES 15728 41 43.5 
A5 

YES 

0 NO / / / 
A6 10-1 YES 23 2 4 
A7 10-3 YES 151 0.5 2.5 
A8 10-5 NO / / / 

 
This set of simulations has shown that for the investigated problem the automatic stabilisation 
(with default setup) is not a proper convergence improvement technique. The simulations 
with automatic stabilisation do not converge or the reaction moment after delamination onset 
is not constant and has physically unrealistic growing trend (see Figures 3 and 4). 
Conversely, the viscous regulation has shown good results for parameter values of 10-3 and 
10-5 and therefore, value of 10-4 is included with those values in the further investigations 
with different mesh. 
 

Figure 3. Reaction moment for different 
configurations vs. time/angle 

Figure 4. Reaction moment  for different 
configurations in crack propagation 
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4.2. The second set of simulations: viscosity, mesh size and energy integration method 
investigation 
In this set of simulations viscous regulation is further investigated, including mesh size and 
integration method selection. Six simulations (see Table 2) with different configurations are 
carried out and analysed, with three different cohesive element viscosity values (10-3, 10-4 
and 10-5) and two different mesh sizes: 240x12 (element size 0.5x0.5 mm) and 600x30 
(element size 0.2x0.2 mm). The Abaqus output values are imported into a Microsoft Excel 
document where calculation is performed.  As can be observed, crack and damage zone 
propagation as well as size of an initial damage zone for different configurations have close 
results, what is expected for the simulations with the identical test configurations. All the 
configurations also have equal (or approximately equal) sizes of the damage zone throughout 
the delamination process (as expected due to the steady state crack propagation) and also 
similar values when comparing between them. Based on a size of the initial damage zone and 
mesh, a number of the elements in a damage zone for each configuration is calculated and 
considered in further analyses. The reaction moment in all simulations have constant trend 
during crack propagation (see Figures 5 and 6). 
 
 

Table 2. The second set of simulations configurations and overview of results  

Configuration Mesh Viscosity 
parameter Convergence Increments 

(automatic) 
Initial

damage 
zone

Crack
(mm)

Damage 
(mm) 

Number of 
elements in 

damage zone
B1 240 

x 
12 

10-3 YES 1394 2.5 40.5 43 5
B2 10-4 YES 6414 2.5 41 43.5 5
B3 10-5 YES 15728 2.5 41 43.5 5
B4 600 

x 
30 

10-3 YES 993 2 41.2 43.2 10
B5 10-4 YES 6837 2.2 42.6 44.6 11
B6 10-5 YES 36087 2.2 42.8 44.8 11

 
 

Figure 5. Reaction moment for different 
configurations vs. time/angle 

Figure 6. Reaction moment  for different 
configurations in crack propagation 
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Energy release rates partitions are calculated with previously given equations: (9), (10) and 
(12), with the two integration methods, in all simulations. Total energy (sum of partitions) 
calculated by the local and global approach in relation to the crack propagation size is given 
in Figures 7 and 8, respectively. 
The configurations B5 and B6 (with finer mesh and smaller viscosity value 10-4 and 10-5) 
show the smallest error in deviation from the prescribed fracture energy value of 2200 J/m . 
All the charts show converging zone in the crack onset (2 to 5 mm), which is most probably 
effect of the singularity at the initial crack tip. It can be observed that a converging zone and 
a change of energy value (as well as error in deviation from the prescribed value) are greater 
if the viscosity value is higher and the mesh is coarser. Afterwards, a constant trend is 
obeserved, with more variations in the results calculated by integration over the cohesive 
zone for coarser meshes (B1, B2 and B3). The results for these configurations also have 
greater disagreement in terms of the integration method applied. It can be seen that the global 
approach is less accurate, what is expected, because a quality of discretisation in a numerical 
integration for the global approach is directly dependent on a mesh size. A discretisation 
quality for the local approach is dependent on time increment and common large number of 
increments provides more accurate calculations. Further mesh refinement is expected to 
decrease deviations in results from the two calculation methods, but because this would 
significantly increase CPU processing time, further investigations with the finer mesh were 
not performed. 
 
 

Figure 7. Total energy according to the local 
approach 

Figure 8. Total energy release rate according to 
the global approach 
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Figures 9 and 10 show mode-mixity ratio GI/G calculated by the local and global approach, 
respectively, plotted against crack propagation size. 
 
 
 
 
 
 
 
 



Figure 9. Mode-mixity ratio GI/G for different 
configurations calculated by the local approach 

Figure 10. Mode-mixity ratio GI/G for 
different configurations calculated by 

the global approach 
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The review of the theories and solutions for calculating mode-mixity in beam-like 
geometries[6]-[11] done in [2] shows that all of them predict almost equal values of GI/G 
ratio for the FRMM test configuration used in this work; approximately equal to 0.571. 
Again, the configurations B5 and B6 provide the most reliable results: the best agreement 
with analytical solutions and the smallest variations in the crack propagation (proper steady-
state behaviour). Similarly to the previous findings from energy calculation, there are larger 
disagreements between results obtained with different integration methods for the coarse 
meshes (B1, B2 and B3). Also, converging zone can be observed in the beginning of crack 
propagation, being larger in the configurations with finer mesh. This shows a change of 
fracture mode-mixity from a crack tip element (singularity) to the rest of cohesive zone 
elements that go through similar fracture process. A better insight into the change of mode-
mixity with the crack propagation is possible with the local partition approach (in the global 
approach rest of the zone averages the converging zone), and it shows increasing trend of 
mode-mixity GI/G ratio in the crack tip element with mesh refinement.  
In summary, the configurations B5 and B6 with mesh size 0.2x0.2 mm and with viscosity 
values of 10-4 and 10-5 show the best performance. The recommended mesh size provides 11 
elements in the damage zone, what is similar to findings given in [12]. Comparing the two 
viscosity values, value of 10-5 provides slightly better performance, but requires significantly 
more CPU time (more than 5 times as many increments, table 2), so the value of 10-4 is 
recommended for similar problems. 
 
5. SUMMARY AND CONCLUSIONS 
Two simulation sets of a single geometrically symmetrical FRMM test with a pure rotation 
applied to the top beam have been performed using cohesive zone model in Abaqus. 
Configurations of the test, FEM model and cohesive zone model used are presented.  
The first set of simulations has been used to investigate influence of convergence 
improvement techniques (viscosity and automatic stabilisation) on simulation accuracy. 
Cohesive element viscosity is recommended as a better technique for the investigated case. 
Monitoring of the reaction moment in the nodes where rotation is applied is proposed as an 
evaluation method. 



In the second set of simulations, viscosity values and mesh sizes are varied and their 
influence on fracture mode-mix analyses is investigated. A global (integration of energy over 
cohesive zone) and a local (integration of energy going into cohesive element) approach are 
presented and used for calculation of energy release rate contribution from mode I and mode 
II fracture. Both approaches give similar results, but the local one provides better insight into 
change in mode-mixity with crack propagation and shows less mesh dependence. Results 
lead to the conclusion that the viscosity value of 10-4 and a mesh size providing at least 10 
cohesive elements in the damage zone can be recommended for similar problems. 
The findings presented here will be used in further numerical investigations of FRMM test 
mode-mixity which will include asymmetric DCB geometries and different cohesive zone 
properties. 
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